Lecture 3
Math & Probability
Background

ch. 1-2 of Machine Vision by Wesley E. Snyder & Hairong Qi

Spring 2016
18-791 (CMU ECE) : 42-735 (CMU BME) : BioE 2630 (Pitt)
Dr. John Galeotti

General notes about the book

- The book is an overview of many concepts
- Top quality design requires:
 - Reading the cited literature
 - Reading more literature
 - Experimentation & validation
Two themes

- Consistency
 - A conceptual tool implemented in many/most algorithms
 - Often must fuse information from many local measurements and prior knowledge to make global conclusions about the image

- Optimization
 - Mathematical mechanism
 - The “workhorse” of machine vision

Image Processing Topics

- Enhancement
- Coding
 - Compression
- Restoration
 - “Fix” an image
 - Requires model of image degradation
- Reconstruction
Machine Vision Topics

- **AKA:**
 - Computer vision
 - Image analysis
 - Image understanding

- **Pattern recognition:**
 1. **Measurement of features**
 - Features characterize the image, or some part of it
 2. **Pattern classification**
 - Requires knowledge about the possible classes

Feature measurement

- **Original Image**
 - **Ch. 6-7** Noise removal
 - **Ch. 8** Segmentation
 - **Ch. 9** Shape Analysis, Consistency Analysis
 - **Ch. 10-11** Matching
 - **Ch. 12-16** Features

Our Focus
Probability

- Probability of an event a occurring:
 - $Pr(a)$
- Independence
 - $Pr(a)$ does not depend on the outcome of event b, and vice-versa
- Joint probability
 - $Pr(a,b) = \text{Prob. of both } a \text{ and } b \text{ occurring}$
- Conditional probability
 - $Pr(a|b) = \text{Prob. of } a \text{ if we already know the outcome of event } b$
 - Read “probability of a given b”

Probability for continuously-valued functions

- Probability distribution function:
 $$P(x) = Pr(z < x)$$
- Probability density function:
 $$p(x) = \frac{d}{dx} P(x)$$
 $$\int_{-\infty}^{\infty} p(x) dx = 1$$
Linear algebra

\[\mathbf{v} = [x_1 \, x_2 \, x_3]^T \quad \mathbf{a}^T \mathbf{b} = \sum_i a_i b_i \quad |\mathbf{x}| = \sqrt{\mathbf{x}^T \mathbf{x}} \]

- Unit vector: \(|\mathbf{x}| = 1 \)
- Orthogonal vectors: \(\mathbf{x}^T \mathbf{y} = 0 \)
- Orthonormal: orthogonal unit vectors
- Inner product of continuous functions
 \[\langle f(x), g(x) \rangle = \int_a^b f(x) g(x) \, dx \]
 - Orthogonality & orthonormality apply here too

Linear independence

- No one vector is a linear combination of the others
 - \(x_j \neq \sum a_i x_i \) for any \(a_i \) across all \(i \neq j \)
- Any linearly independent set of \(d \) vectors \(\{\mathbf{x}_i = 1 \ldots d\} \)
 is a basis set that spans the space \(\mathbb{R}^d \)
 - Any other vector in \(\mathbb{R}^d \) may be written as a linear combination of \(\{\mathbf{x}_i\} \)
- Often convenient to use orthonormal basis sets
- Projection: if \(\mathbf{y} = \sum \mathbf{a}_i \mathbf{x}_i \) then \(\mathbf{a}_i = \mathbf{y}^T \mathbf{x}_i \)
Linear transforms

- a matrix, denoted e.g. A
- Quadratic form:
 $$\mathbf{x}^T A \mathbf{x}$$
 $$\frac{d}{d\mathbf{x}} (\mathbf{x}^T A \mathbf{x}) = (A + A^T) \mathbf{x}$$
- Positive definite:
 - Applies to A if
 $$\mathbf{x}^T A \mathbf{x} > 0 \quad \forall \mathbf{x} \in \mathbb{R}^d, \mathbf{x} \neq 0$$

More derivatives

- Of a scalar function of \mathbf{x}:
 - Called the gradient
 - Really important!
 $$\frac{df}{d\mathbf{x}} = \left[\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \ldots \frac{\partial f}{\partial x_d} \right]^T$$
- Of a vector function of \mathbf{x}
 - Called the Jacobian
 - Hessian = matrix of 2nd derivatives of a scalar function
Misc. linear algebra

- Derivative operators
- Eigenvalues & eigenvectors
 - Translates “most important vectors”
 - Of a linear transform (e.g., the matrix \(A \))
 - Characteristic equation: \(Ax = \lambda x \quad \lambda \in \mathbb{R} \)
 - \(A \) maps \(x \) onto itself with only a change in length
 - \(\lambda \) is an eigenvalue
 - \(x \) is its corresponding eigenvector

Function minimization

- Find the vector \(x \) which produces a minimum of some function \(f(x) \)
 - \(x \) is a parameter vector
 - \(f(x) \) is a scalar function of \(x \)
 - The “objective function”
 - The minimum value of \(f \) is denoted:
 \[\hat{f}(x) = \min_{x} f(x) \]
 - The minimizing value of \(x \) is denoted:
 \[\hat{x} = \arg\min_{x} f(x) \]
Numerical minimization

- Gradient descent
 - The derivative points away from the minimum
 - Take small steps, each one in the “down-hill” direction
- Local vs. global minima
- Combinatorial optimization:
 - Use simulated annealing
- Image optimization:
 - Use mean field annealing

Markov models

- For temporal processes:
 - The probability of something happening is dependent on a thing that just recently happened.
- For spatial processes
 - The probability of something being in a certain state is dependent on the state of something nearby.
 - Example: The value of a pixel is dependent on the values of its neighboring pixels.
Markov chain

- Simplest Markov model
- Example: symbols transmitted one at a time
 - What is the probability that the next symbol will be \(w \)?
- For a “simple” (i.e. first order) Markov chain:
 - “The probability conditioned on all of history is identical to the probability conditioned on the last symbol received.”

Hidden Markov models (HMMs)
HMM switching

- Governed by a finite state machine (FSM)

The HMM Task

- Given only the output $f(t)$, determine:
 1. The most likely state sequence of the switching FSM
 - Use the Viterbi algorithm (much better than brute force)
 - Computational Complexity of:
 - Viterbi: $(\text{# state values})^2 \times (\text{# state changes})$
 - Brute force: $(\text{# state values})^{\text{# state changes}}$
 2. The parameters of each hidden Markov model
 - Use the iterative process in the book
 - Better, use someone else's debugged code that they've shared