Lecture 20
Deformable / Non-Rigid Registration

ch. 11 of Insight into Images edited by Terry Yoo, et al.
Methods in Medical Image Analysis - Spring 2012
BioE 2630 (Pitt) : 16-725 (CMU RI)
18-791 (CMU ECE) : 42-735 (CMU BME)
Dr. John Galeo8

Registration: “Rigid” vs. Deformable

• Rigid Registration:
 ▪ Uses a simple transform, uniformly applied
 ▪ Rotations, translations, etc.
• Deformable Registration:
 ▪ Allows a non-uniform mapping between images
 ▪ Measure and/or correct small, varying discrepancies by deforming one image to match the other
 ▪ Usually only tractable for deformations of small spatial extent!

Deformable, i.e. Non-Rigid, Registration (NRR)

• Vector field (aka deformation field) T is computed from A to B
• Inverse warp transforms B into A’s coordinate system
• Not only do we get correspondences, but…
• We also get shape differences (from T)

NRR Clinical Background

• Internal organs are non-rigid
• The body can change posture
 ▪ Even skeletal arrangement can change
• Single-patient variations:
 ▪ Normal
 ▪ Pathological
 ▪ Treatment-related
• Inter-subject mapping: People are different!
 ▪ Atlas-based segmentation typically requires NRR

More Clinical Examples

• Physical brain deformation during neurosurgery
• Normal squishing, shifting and emptying of abdominal/pelvic organs and soft tissues
 ▪ Digestion, excretion, heart-beat, breathing, etc.
• Lung motion during respiration can be huge!
• Patient motion during image scanning

Optical Flow

• Traditionally for determining motion in video—assumes 2 sequential images
• Detects small shifts of small intensity patterns from one image to the next
• Output is a vector field, one vector for each small image patch/intensity pattern
• Basic gradient-based formulation assumes intensity values are conserved over time
Optical Flow Assumptions

- Images are a function of space and time
- After short time dt, the image has moved dx
- Velocity vector $v = dx/dt$ is the optical flow

$$I(x, t) = I(x + dx, t + dt) = I(x + v dt, t + dt)$$

- Resulting optical flow constraint:

$$C_v = I \cdot v + I_t = 0$$

Optical Flow Constraint

- Optical flow constraint dictates that when an image patch is spatially shifted over time, that it will retain its intensity values
- Let image $A = I(x, t=0)$ and let $B = I(x, t=1)$
- Then $I_t = A(T) - B$

This alone is not a sufficient constraint!

NRR Is Ill-Posed

- Review of well-posed problems:
 - A solution exists, is unique, and depends continuously on the data
 - Otherwise, a problem is ill-posed
- Ambiguity within homogenous regions:

Very Ill-Posed Problem

- NRR answer is not unique, and...
- NRR Search-space is often ∞-dimensional!

- Solution: Regularization
 - Adding a regularization term can provide provable uniqueness and a computable subspace
- Usually base regularization on continuum mechanics
 - T is restricted to be physically admissible
 - We're typically deforming physical anatomy, after all
- Optimum T should deform “just enough” for alignment

NRR Regularization Methods

- Numerous continuum mechanical models available for regularization priors
 - Elastic
 - Diffusion
 - Viscous
 - Flow
 - Curvature
- Optimization is then physical simulation over time, t, of trying to deform one image shape to match another
- This optimization has 3 equivalent formulations:
 - Global potential energy minimization
 - Variational or weak form, as used in finite-element methods
 - Euler-Lagrangian (E-L) equations, as used in finite-difference techniques

Langrangian View

- Elastic physical model:
 - How much have we stretched, etc., from our original image coordinates?
 - Simulation calculates the physical model's resistance to deformation based on the total deformation from time $t=0$ to now
- T is the final vector field $\tilde{\delta}$:

$$\tilde{\delta} = \Delta x - \Delta \tilde{\delta}$$

$$A(X + \tilde{\delta}) - B(x)$$

$$X = x - \tilde{\delta}$$

- Deformation at time t:

$$\Delta X = X - X_0$$

- Deformation at time $t + dt$:

$$\Delta X = X - X_0$$
Eulerian View

- Viscous-flow physical model: How much have we flowed from our immediately previous simulation state?
- Simulation calculates the physical model’s resistance to deformation based on the incremental deformation from time \(t \) (now) to \(t + dx \).
- \(\dot{\mathbf{x}} \) is the aggregate flow of \(\mathbf{x}(t) \), based on accumulated optical flow (i.e., velocity) \(\mathbf{v}(t) \):
 - \(\dot{\mathbf{x}}(t) = \mathbf{x}(t) + \mathbf{v}(t) \)
 - \(\Delta \mathbf{x} = \mathbf{x}(t + dx) - \mathbf{x}(t) \)

Deformation at time \(t \):

Deformation at time \(t + dx \):

Comparison of Regularization Reference Frames

- Lagrangian
- The entire deformation is regularized
- Well constrained for “normal” physical deformation
- Too constrained to achieve “large” deformations
- Not ideal for many inter-subject mapping tasks

- Eulerian
- Only the incremental updates are regularized
- Underconstrained for “normal” physical deformation
- Readily achieves large, inter-subject deformations
- Unrealistic transformations can result

Optical Flow Regularized

\[
E_D(\mathbf{v}) = \int_\Omega \Psi(C_\mathbf{v}) d\Omega + \int_\Omega \Psi(\mathbf{v}) d\Omega
\]

- \(\Psi(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v} \)
- \(\Psi(\mathbf{v}) = ||\mathbf{v}||^2 \)
- Goal: Minimize global potential energy, \(E_D \)
- First term adjusts \(\mathbf{v} \) to make the images match within the bounded domain \(\Omega \)
- Second term adds a stabilizing function \(\Psi \), typically a regulator operator \(L \) applied to \(\mathbf{v} \)

Optical Flow E-L Regularized

- After deriving the E-L equations & setting their derivative = 0, we find that the...
- Potential energy minimum will occur when:
 \[
 I_1 (L \cdot \mathbf{v} + I) - \mathbf{v} = 0
 \]
- First term minimizes optical flow constraint
- Second term minimizes Laplacian (i.e. roughness) of velocity field \(\mathbf{v} \)
- Note that this equation is evaluated locally
 - Allows for efficient implementation

Demons Algorithm

- Very efficient gradient-descent NRR algorithm
- Originally conceived as having “demons” push image level sets around, but is also...
- Based on E-L regularized optical flow
- Alternates between minimizing each half of the previous equation:
 - Descent in optical flow direction, based on:
 \[
 I_1 (L \cdot \mathbf{v} + I) = 0
 \]
 - Smoothing, which estimates \(\mathbf{v} = 0 \) with a difference-of-Gaussian filter, by applying a Gaussian on each iteration
Demons Summarized

- Initialize solution (i.e. total vector field) = identity
- Loop:
 - Estimate vector field update
 - Use (stabilized) optical flow
 - Add update to total vector field
 - Blur total vector field (for regularization)

- Allows much larger deformation fields than optical flow alone.
- **Langrangian registration**: blur the total vector field (as above)
- **Eulerian registration**: blur the individual vector-field updates

Choices & Details

- There are many more NRR algorithms available
- Almost all of them are slower than demons, but they may give you better results
- See the text for details, and lots of helpful pictures